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T
he number of 3D geometric models
available in online repositories is 
growing dramatically. Examples include:
the Protein Data Bank [1], which stores
the 3D atomic coordinates for 29,000
protein molecules; the National Design
Repository [9], which stores 3D com-
puter-aided design (CAD) models for
tens of thousands of mechanical parts;
and the Princeton Shape Database [5],
which stores polygonal surface models
for 36,000 everyday objects crawled
from the Web. Since graphics hardware
is getting faster and 3D scanning 
hardware cheaper, there is every 
reason to believe that demand for and
supply of 3D models will continue to
increase into the future, leading to an 

Just like Google searches online text documents, 
emerging systems now search repositories of 3D surface 
models with queries describing geometric properties. 

Shape-Based Retr   ieval and
Analysis of 3D M  odels
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online environment in which 3D models are as
plentiful as images, videos, and audio files today.

L
arge digital repositories of 3D
models help create demand for
search engines that are able to
retrieve the data of interest and
for data mining algorithms to
discover relationships among
them. Text annotation is almost

always helpful, but content-based methods are often
required to discover novel geometric relationships in
the data. For example, a mechanical engineer might
use a search engine to find a particular CAD model in
a parts catalog based on its 3D shape characteristics; a

doctor might use an automatic classification system to
aid diagnosis of a disease from the shapes of afflicted
organs; and a paleontologist might use shape analysis
to link similar 3D models scanned from animal skele-
tons of different species.

Such problems are common to other types of mul-
timedia data, including sound, images, and video.
However, databases of 3D models have several new
and interesting characteristics that significantly affect
shape-based retrieval and analysis algorithms. Unlike
other multimedia data types, most 3D models do not
depend on the configuration of sensors, emitters, or
surrounding objects. As a result, they do not contain
projections, reflections, shadows, or occlusions,
greatly simplifying identification of matches among
objects of the same type. For example, it is plausible
to expect that the 3D model of a horse contains
exactly four legs of roughly equal size. In contrast, any
2D image of the same horse may contain fewer than
four legs (if some of them are occluded by, say, tall
grass) or “extra legs” appear as the result of shadows
on a barn or reflections in a nearby pond, or some of
the legs appear smaller than others due to perspective
distortions. 

These problems are vexing when analyzing images
but absent from most 3D models. In other respects,
representing and processing 3D models is more com-

plicated than for other types of multimedia. The
main difficulty is that 3D surfaces rarely have simple
parameterizations. Since 3D surfaces can have arbi-
trary topologies, many useful methods for analyzing
other media (such as Fourier analysis) have no obvi-
ous analogues for 3D surface models. Moreover, the
dimensionality is higher, making searches for pose
registration, feature correspondences, and model
parameters more difficult, while the likelihood of
model degeneracies is greater. As such, a specialized
set of shape analysis methods is required for 3D data.

Here, we explore applications and technologies for
shape-based retrieval and analysis of 3D models. We
survey motivating applications (see the sidebar
“Shape Analysis Applications”), review shape repre-

sentations, present a case
study for a shape-based
search engine for retrieval of
3D models crawled from the
Web, and provide references
to related projects and Web
sites. Our aim is to introduce

the problems in 3D shape analysis and provide a road
map for possible solution methods. 

SHAPE ANALYSIS METHODS

Methods for computer-aided shape analysis and
retrieval are being pursued in several fields, includ-
ing computer vision, computational geometry, and
computer graphics. Most of this work has focused
on specific data types (such as CAD and range
scans). General-purpose methods have also been
described. Surveys can be found in [7, 12].

The primary challenge in building a shape-based
retrieval and analysis system is to find a computa-
tional representation of shape (shape descriptors) for
which an index can be built, similarity queries
answered efficiently, and/or interesting features com-
puted robustly. Shape-based descriptors should gener-
ally be concise; efficient to compute, compare, and
search; insensitive to noise, blur, cracks, and small
extra features; independent of 3D object representa-

Figure 1. Harmonic shape
descriptor. A robust, concise,
rotation-invariant shape 
representation can be 
constructed from the 
amplitudes of spherical 
harmonic coefficients within
every frequency (order) and
spherical shell of a grid. 



tion, tessellation, topology, or genus; invariant to
transformations (such as scales, translations, rotations,
mirrors, or articulations); and representative of key
shape features. 

Most of all, they should enable an efficient algo-
rithm to compute the shape properties of interest to a
particular application domain. Unfortunately, it is

unlikely that any single shape descriptor will satisfy all
these properties, as there are usually trade-offs
between computational expense and discrimination
power. The spectrum of shape descriptors ranges from
those that are simple to compute (but perhaps not
very discriminating) to those that require expensive
computations (but provide sophisticated shape analy-
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3D shape analysis is important in many application
domains, including molecular biology, chemistry, forensics,
mechanical CAD, military target recognition, medicine, paleon-
tology, computer graphics, computer vision, entertainment, and
art. The related challenges (see the figure) are similar for each
and can be characterized by the following basic problem types:

Registration. Given two 3D models, align
them optimally; for example, an archeolo-
gist might want to align 3D scans of exca-
vated pots in order to visualize their
similarities and differences;

Matching. Given two 3D models, com-
pute the geometric similarity between them;
for example, a doctor might want to com-
pare a pair of MRI scans to characterize the
differences between tumors scanned in dif-
ferent patients or the same tumor scanned
in a single patient at different times; 

Retrieval. Given a database of 3D mod-
els and a geometric query, find the models
that best match the query; for example, a
kitchen designer might search a catalog for
furniture that best matches a set of geo-
metric constraints imposed by an oddly
shaped room; 

Recognition. Given a database of 3D models and a query
model, either find the query model in the database or deter-
mine it is not there; for example, a criminal investigator might
search a database of 3D face images scanned from known
criminals to identify the ones that best match surveillance
camera images; 

Verification. Given a 3D model and a specification, deter-
mine whether they match to within some tolerance; for exam-
ple, a machinist might want to detect defects in manufactured
parts passing a laser scanner on a conveyer belt; 

Clustering. Given a database of 3D models, automatically
partition them into a set of classes; for example, a paleontolo-
gist might derive insight into the process of evolution by clus-
tering 3D models of fossils scanned from different species; 

Feature detection. Given a 3D model, find geometric fea-
tures of interest on its surface; for example, an art historian
might want to detect marks from a particular type of chisel on

the scanned surface of a famous statue; 
Classification. Given a set of model class specifications

and a query model, determine the class to which the query
model belongs; for example, a molecular biologist might
classify new protein structures based on geometric compar-
isons to others with known function; 

Segmentation. Partition a given 3D model into its salient
parts; for example, an animator might want assistance in
building an articulated “skeleton” model to be used for ani-
mating a human character model acquired through a full-
body laser range scanner;

Semantic labeling. Infer semantic meaning regarding the
purpose and function of a given 3D model; for example, a
mesh-processing system might want to recognize important
semantic features of a 3D model in order to avoid destroying
them when the model is simplified or compressed; and 

Synthesis. Automatically synthesize new examples 
typical of a given model class specification; for example, by
examining 3D surfaces of several office chairs, a computer
program might be able to develop a parameterized model
for the geometric arrangements of their parts, then help
automate construction of new chairs by assembling parts
automatically. c
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sis). They are sometimes integrated
into a retrieval system organized as a
pipeline of conservative filters,
where the early ones quickly cull
irrelevant 3D models from consid-
eration, and the later ones provide
more discriminating shape analysis
for smaller subsets of the remaining
candidates.

At the low end of the spectrum, shapes can be rep-
resented by their statistical properties. The simplest
approach describes a shape as a feature vector where
the axes of a multidimensional feature space encode
global geometric properties (such as genus, algebraic
moments, circularity, eccentricity, and compactness)
[3]. Other methods utilize histograms of geometric
statistics (such as the distances between points and the
angles between lines and planes). Yet others charac-
terize statistics of frequency decompositions for
shapes for, say, storing the amplitudes of spherical
harmonic coefficients to provide invariance to rota-
tions (see Figure 1). These statistical methods are gen-
erally robust, concise, quick to compute, indexable,
and effective for characterizing large-scale shape fea-
tures. But they also often provide invariance to a lim-
ited range of transformations (such rigid body
transformations), are not invertible, and fail to cap-
ture subtle semantic details that might be valuable 
for discriminating among slightly different classes of
shapes (such as doors with keyholes vs. doors without
keyholes).

At the high end of the spectrum, shape can be rep-
resented by model-based structures that capture the
geometric relationships among the key parts of an
object [11]. For example, hierarchical structures can
be used as templates for which their fit to a shape pro-
vides useful information for recognizing or classifying

articulated shapes. Alternatively, a shape can
be decomposed into its parts automatically
through algorithms that decompose its sur-
face along concave seams, compute an
approximation to its medial axis, or approxi-
mate its volume with a set of simple primi-
tives (such as covering it with ellipsoids).
These methods are generally good at captur-
ing the topology of an object but are almost
always time-consuming to compute, overly
sensitive to small features, and difficult to
match and/or index for retrieval applications.

In the middle of the spectrum are a
plethora of approaches, including view-based
representations that describe the shape of a
3D object by “how it looks” in a set of 2D
projections from different views [2] and

point-based methods that describe the local shape
around a multitude of sample points [4]. Each
method involves its own benefits and costs associated
with different application domains. Comparing these
shape representations is difficult [10], especially since
the quality of the results is subjective. However,
lower-level statistical shape descriptors are generally
more successful in applications involving recognition,
matching, and retrieval, while higher-level model-
based shape representations are better suited for seg-
mentation, semantic labeling, and synthesis
applications. 

RETRIEVING 3D MODELS

Perhaps the most important application of 3D shape
analysis is the retrieval of 3D models available on
the Web. Several such search engines have recently
been introduced for indexing 3D data for computer
graphics, molecular biology, and mechanical CAD.
One of the earliest was the Princeton 3D Model
Search Engine, which went online in 2001 and
today indexes 36,000 computer graphics models
crawled from the Web. It was developed to help peo-
ple looking for 3D polygonal surface models (such
as cars and humans)—in other words, a Google for
3D models.

The Princeton search engine is available as a Web
page (shape.cs.princeton.edu) in which the user enters
queries, and the system retrieves the best-matching 3D
models from a Web-crawled repository, presenting
them as a ranked set of thumbnail images (see Figure
2). If the user clicks on any returned thumbnail image,
the system produces a pop-up Web page with detailed
information and close-up images of the associated 3D
model, along with a link for downloading the 3D
model file from its original Web address. 

Since different types of objects are best described
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Figure 2. Princeton
3D Model Search
Engine. The user

draws a 3D sketch
(left), and the sys-

tem returns 3D
models with similar

shape from its
repository.



through different query types, the system supports
many different query interfaces. Perhaps the simplest
is a text box (see Figure 2 upper left) in which the user
enters keywords (such as “car’’), and the system
retrieves 3D models with associated text containing
them (such as matching words in the file name, the
referring Web page, and the scene graph node names).
Alternatively, the user can sketch 2D outlines of the
desired object, possibly as seen from multiple view-
points; the system then returns 3D models whose pro-
jections match the sketches. Finally, the user can
specify a query with a 3D shape, either by uploading
an existing 3D model, sketching a coarse 3D model
from scratch, as in Figure 2, or clicking on the “Find
Similar Shapes’’ link under any previously retrieved
thumbnail image. The system then matches the shape
of the 3D query to the models in the repository and
returns the best matches. 

Each of these query types requires its own indexing
and retrieval strategy. Here, we consider the 3D shape
queries (see [5] for details on the others) where the
problem is: Given a repository of 3D models, build an
index that can be searched efficiently to find the clos-
est matches to an arbitrary 3D query model. The
problem is difficult because computer graphics mod-
els found on the Web can appear in any coordinate
system, with arbitrary degeneracies (disconnected,

overlapping, and intersecting polygons)
and widely varying shapes within the
same class of objects. Yet matches must
be found within a second or so to provide
an interactive response to every query.
Thus, robustness, transformation invari-
ances, and speed are the primary con-
cerns when choosing a shape
representation for this application
domain.

The search engine uses a statistical
shape descriptor representing the shape
of each 3D model by a 2D feature vector
describing “how much shape” resides
within each spherical harmonic fre-
quency and each distance from the mod-
el’s center of mass, as in Figure 1 [6]. This
representation is insensitive to mesh
degeneracies, since the 3D function from
which spherical harmonic coefficients are
computed depends only on distance
from the surface, not on the tessellation
of the mesh. The representation is also
invariant to the model’s orientation; thus,
comparison of the descriptors can be per-
formed without aligning the models a
priori or searching over all possible rota-

tions. Third, it provides the important theoretical
guarantee that the Euclidean distance between two
descriptors provides a lower bound on the Euclidean
distance between the corresponding 3D models. The
guarantee means there are no false negatives when the
descriptor is used for narrowing down a set of candi-
date matches to be examined later in greater detail.
Finally, it enables efficient indexing based on nearest-
neighbor search structures. Empirically, for queries to
the search engine, the system takes less than one sec-
ond to find the 16 best matches in a database with
36,000 3D structures. It retrieves better matches than
many larger and computationally more expensive
descriptors.

The search engine has deployed these query inter-
faces and retrieval methods [8], so far receiving
770,000 queries from 160,000 different hosts and
130 different countries and been slashdotted twice.
Thus, it is now possible to characterize how the sys-
tem is used in vivo. As you might expect, the major-
ity of queries (65%) include only text keywords; text
is the most familiar type of query for most users and
the quickest to enter. However, one-third of the
queries have incorporated some sort of shape, most
often as “find similar shape’’ (13% of all queries) and
2D sketches (16% of all queries). 

While it is difficult to say which query types users
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For more on shape-based retrieval and analysis, explore the following 
projects and resources available on the Web:

ARIZONA STATE UNIVERSITY. 3D Knowledge, Acquisition, Representation, 
and Analysis, 3dk.asu.edu/ 

CARNEGIE MELLON UNIVERSITY. 3D Model Retrieval Project, 
amp.ece.cmu.edu/projects/3DModelRetrieval/ 

DREXEL UNIVERSITY. National Design Repository, 
www.designrepository.org/ 

HERIOT-WATT UNIVERSITY. ShapeSifter, www.shapesearch.net/ 
IBM. 3D Geometry Search Technology Project, www.trl.ibm.com/

projects/3dweb/SimSearch_e.htm 
INFORMATICS AND TELEMATICS INSTITUTE. 3D Search, 3d-search.iti.gr/ 
NATIONAL INSTITUTE OF MULTIMEDIA EDUCATION, JAPAN. Ogden, 

www.nime.ac.pj/~motofumi/Ogden/ 
NATIONAL RESEARCH COUNCIL CANADA. Nefertiti, www.cleopatra.nrc.ca/ 
PRINCETON UNIVERSITY. 3D Model Search Engine, shape.cs.princeton.edu/ 
PURDUE UNIVERSITY. 3DESS, tools.ecn.purdue.edu/~cise/dess.html
TAIWAN UNIVERSITY. 3D Model Retrieval System, 3d.csie.ntu.edu.tw/ 
UNIVERSITY OF KONSTANZ. 3D Model Similarity Search Project, dbvis.inf.

uni-konstanz.de/research/projects/SimSearch3D/
UTRECHT UNIVERSITY. 3D Shape Recognition Project, www.cs.uu.nl/

centers/give/multimedia/3Drecog/index.html 



find most effective, we have found that text and shape
queries augment each other in controlled user studies
[5]. People tend to be most effective when starting
out with a text query (to retrieve an example from a
desired class of objects), then using “find similar
shape’’ to find other models of the same type that
were not well-annotated. Overall, users seem to find
the search engine a useful tool for quickly identifying
and retrieving 3D models on the Web. 

CONCLUSION
Shape-based retrieval and analysis tools are proving
useful in a number of application domains, most
notably computer graphics, mechanical computer-
aided design, and molecular biology. Looking for-
ward, these tools will be increasingly important, as
3D data acquisition hardware becomes more of a
commodity, and more people begin to make and use
3D models in their everyday lives. It will then be
easier to find and retrieve an existing model made by
someone else than it will be to make a new one from
scratch yourself. New methods will soon be

deployed to perform robust feature detection, partial
shape matching, part decomposition, and eventually
complete semantic labeling. 3D models will then
provide not only raw 3D geometry and surface
attributes but smarts regarding their composition,
how they move, and how they are used—all keys to
making 3D data a more useful part of the informa-
tion revolution.
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A mechanical 
engineer might 
use a search engine
to find a particular
CAD model in a
parts catalog based
on its 3D shape 
characteristics.


